Abstract

The N uptake can affect kiwiberry yield and quality; however, the relationship between an increasing N dose and micronutrient accumulation in leaves and fruit is still to be elucidated. Interrelationships between essential nutrients are one of the most important issues in terms of effectiveness in plant mineral nutrition. A pattern in leaf nutrient accumulation throughout the growing period is required to indicate a suitable sampling time for the purpose of nutrient diagnostics and controlled plant feeding. The experiment was conducted on two commercially available cultivars of kiwiberry, 'Weiki' and 'Geneva', during the 2015-2016 growing seasons with an increasing soil N fertility (30-50-80 mg N kg-1 soil DW) to test the relationship between soil N level and leaf/fruit micronutrient concentration. The leaf Zn, Cu, Fe, and Mn concentrations significantly increased with a higher N supply in 'Geneva', while in 'Weiki' only Mn increased. Leaf B, Fe, and Mn gradually increased throughout the growing season, while Cu decreased. Between mid-July and the beginning of August, the lowest fluctuations in the micronutrient contents were recorded. The effect of the growing season on leaf micronutrient accumulation was highly significant; except for Fe, significantly higher micronutrient levels were revealed in 2016. Compared to the leaves, the growing season effect was smaller in the case of fruit micronutrient concentrations. Irrespective of cultivar, the increase in N fertilization resulted in a higher fruit Mn concentration and was insignificant in the case of other micronutrients. The results indicate that the N dose may affect the accumulation of micronutrients within a certain range depending on the tissue type and the genotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.