Abstract

A new method for automatically building statistical shape models from a set of training examples and in particular from a class of hands. In this study, we utilise a novel approach to automatically recover the shape of hand outlines from a series of 2D training images. Automated landmark extraction is accomplished through the use of the self-organising model the growing neural gas (GNG) network, which is able to learn and preserve the topological relations of a given set of input patterns without requiring a priori knowledge of the structure of the input space. The GNG is compared to other self-organising networks such as Kohonen and Neural Gas (NG) maps and results are given for the training set of hand outlines, showing that the proposed method preserves accurate models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.