Abstract

A previously developed method, based on a Shepard interpolation procedure to automatically construct a quantum mechanical potential energy surface (PES), is extended to the construction of multiple potential energy surfaces using multiconfigurational wave functions. These calculations are accomplished with the interface of the PES-building program, GROW, and the GAMESS suite of electronic structure programs. The efficient computation of multiconfigurational self-consistent field surfaces is illustrated with the C + H2, N + H2, and O + H2 reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.