Abstract
An echo-state network (ESN) is an effective alternative to gradient methods for training recurrent neural network. However, it is difficult to determine the structure (mainly the reservoir) of the ESN to match with the given application. In this paper, a growing ESN (GESN) is proposed to design the size and topology of the reservoir automatically. First, the GESN makes use of the block matrix theory to add hidden units to the existing reservoir group by group, which leads to a GESN with multiple subreservoirs. Second, every subreservoir weight matrix in the GESN is created with a predefined singular value spectrum, which ensures the echo-sate property of the ESN without posterior scaling of the weights. Third, during the growth of the network, the output weights of the GESN are updated in an incremental way. Moreover, the convergence of the GESN is proved. Finally, the GESN is tested on some artificial and real-world time-series benchmarks. Simulation results show that the proposed GESN has better prediction performance and faster leaning speed than some ESNs with fixed sizes and topologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.