Abstract

Using the biomimetic process known as microbially induced calcium carbonate precipitation (MICP), the growth of bio-tiles was investigated as an alternative to conventionally fired ceramic tiles which require operating temperatures above 1000 °C, therefore adding to global carbon emissions. The ureolytic activity of Sporosarcina pasteurii was controlled by centrifuging and dilution with fresh yeast extract media. The bio-tiles were grown using a novel submersion method in which custom moulds were placed in exact positions within the bio-reactor and each was mixed individually from beneath. Five parameters were optimised to achieve bio-tiles (dimensions of 100 × 100 × 10 mm) of breaking strength comparable to conventional tiles of equivalent thickness. By optimising ureolytic activity (4.0 mmol/L·min), the cementation solution concentration (0.3 M), the particle size distribution (D10 = 312 μm; D50 = 469 μm), the volume of cementation solution, as well as the addition of supplemental magnesium (0.3 M), bio-tiles with a breaking strength 637 N ± 60 N and a modulus of rupture of 13.0 N/mm2 ± 2.3 N were produced. These parameters exceed the conventional standards of breaking strength and modulus of rupture of 600 N and 8 N/mm2, respectively, the standards set for tiles with a water absorption above 10 %. This is also the first time that an optimum CaCO3 precipitation rate constant has been identified (0.11–0.18 day−1) for producing bio-tiles that meet the strength properties of conventional extruded ceramic tiles. The tile manufacturing technique described in this study is easy to operate and scale since multiple bio-tiles can be produced in larger cementation tanks. This natural tile making process also benefits the environment by operating at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call