Abstract

Gold nanoparticles in aqueous dispersion were prepared using the trisodium citrate reduction method to control the size of particles by changing the concentration of HAuCl4. The average particle size measured by DLS is higher than that obtained by TEM at a zeta potential of -40 mV. When trisodium citrate concentration is kept constant, the particle size increases with gold concentration. The kinetics of growth was studied and apparent kinetic rate constants were determined at various gold/citrate ratios. Gold nanoparticles were attached to silanized glass surfaces; Au rods were grown (ca. 200 nm) by adding more precursors and the rods’ growth rate was monitored by UV-Vis spectroscopy as well as by AFM. Surface functionalization of gold surface was influenced by cysteine. The surface modification by cysteine at pH=6.0 results in aggregation and the red shift of absorption maximum is nearly 200 nm. When glutathione molecules are bound onto the cysteinelinked Au rods on the glass surface, the spectral shift reaches only an amount of 5–10 nm, because the surface attachment hinders the tendency to aggregate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.