Abstract
This work focuses on a novel lightweight machine learning approach to the task of plant disease classification, posing as a core component of a larger grow-light smart monitoring system. To the extent of our knowledge, this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks, residual connections, and dense residual connections applied without pre-training to the PlantVillage dataset. The novel contributions of this work include the proposal of a smart monitoring framework outline; responsible for detection and classification of ailments via the devised lightweight networks as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system. Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy, precision, recall, and F1-scores of 96.75%, 97.62%, 97.59%, and 97.58% respectively, while consisting of only 228,479 model parameters. These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset, of which the proposed down-scaled lightweight models were capable of performing equally to, if not better than many large-scale counterparts with drastically less computational requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.