Abstract

This work focuses on a novel lightweight machine learning approach to the task of plant disease classification, posing as a core component of a larger grow-light smart monitoring system. To the extent of our knowledge, this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks, residual connections, and dense residual connections applied without pre-training to the PlantVillage dataset. The novel contributions of this work include the proposal of a smart monitoring framework outline; responsible for detection and classification of ailments via the devised lightweight networks as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system. Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy, precision, recall, and F1-scores of 96.75%, 97.62%, 97.59%, and 97.58% respectively, while consisting of only 228,479 model parameters. These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset, of which the proposed down-scaled lightweight models were capable of performing equally to, if not better than many large-scale counterparts with drastically less computational requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call