Abstract

Because of the deficiencies in safety and economy of the single hydraulic prop passive advanced support, the grouting anchor cable active advanced support technology is proposed with the Changping Coal Mine 53,081 roadway as the engineering background. By using a combination of theoretical analysis, laboratory tests, numerical simulation, and field tests, the influence of different grouting parameters on the diffusion law of grout is studied. Considering the effect of the stress field on grout migration, a grout seepage-stress coupling model is established. Grouting material ratio tests are carried out and grout parameters are tested. The grouting part of the advanced grouting anchor cable is modeled and solved using the COMSOL Multiphysics numerical software. The results show that the grouting material selected is Portland cement 42.5 and water glass double liquid grout, with a slurry ratio of 15% ACZ-1 type additive and 4% water glass content, and a water–cement ratio of 0.6. The grouting pressure for the 53,081 roadway grouting anchor cable advanced support is 5 MPa, the grouting time is 6 min, and the grouting anchor cable spacing is 2000 mm × 1000 mm. The engineering application shows that the maximum roof subsidence is 180 mm, the maximum separation value at a depth of 9 m is 24 mm, and the maximum separation value at a depth of 3 m is 90 mm. The research results have achieved effective advanced support for the 53,081 roadway, replacing the single hydraulic prop, and provided a theoretical basis for the subsequent design of advanced support parameters for mining roadways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.