Abstract

This paper presents a novel and robust technique for group-wise registration of point sets with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual Entropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC divergence which is used to quantify the dis-similarity between CDFs estimated from each point-set in the given population of point sets. This CDF-HC divergence generalizes the CDF based Jensen-Shannon (CDF-JS) divergence introduced earlier in the literature, but is much simpler in implementation and computationally more efficient.A closed-form formula for the analytic gradient of the cost function with respect to the non-rigid registration parameters has been derived, which is conducive for efficient quasi-Newton optimization. Our CDF-HC algorithm is especially useful for unbiased point-set atlas construction and can do so without the need to establish correspondences. Mathematical analysis and experimental results indicate that this CDF-HC registration algorithm outperforms the previous group-wise point-set registration algorithms in terms of efficiency, accuracy and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.