Abstract
A group $G$ is said to be a $(PF)C$-group or to have polycyclic-by-finite conjugacy classes, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $xin G$. This is a generalization of the familiar property of being an $FC$-group. De Falco et al. (respectively, de Giovanni and Trombetti) studied groups whose proper subgroups of infinite rank have finite (respectively, polycyclic) conjugacy classes. Here we consider groups whose proper subgroups of infinite rank are $(PF)C$-groups and we prove that if $G$ is a group of infinite rank having a non-trivial finite or abelian factor group and if all proper subgroups of $G$ of infinite rank are $(PF)C$-groups, then so is $G$. We prove also that if $G$ is a locally soluble-by-finite group of infinite rank which has no simple homomorphic images of infinite rank and whose proper subgroups of infinite rank are $(PF)C$-groups, then so are all proper subgroups of $G$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.