Abstract
A group G is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a finitely generated soluble group is metahamiltonian if and only if all its finite homomorphic images are metahamiltonian; the behaviour of soluble minimax groups with metahamiltonian finite homomorphic images is also investigated. Moreover, groups satisfying the minimal condition on non-metahamiltonian subgroups are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.