Abstract

The extension problem for abelian groups (as a special case of the general group-theoretical question formulated by O. Schreier) consists in constructing a group from a normal subgroup and the corresponding factor group. The classical way of discussing extensions is via factor sets which we follow in our presentation (simplified for the abelian case). Then we introduce Baer’s group Ext, an extremely important device, and discuss its fundamental properties. The intimate relationship between Hom and Ext has been pointed out by Eilenberg–MacLane [1]; this led to the interpretation of Ext as a derived functor of Hom and has been exploited extensively in Homological Algebra. Another important functor is Pext, the group of pure extensions, which appears unexpectedly as the first Ulm subgroup of Ext.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.