Abstract
We construct certain Steinberg groups associated to extended affine Lie algebras and their root systems. Then by the integration methods of Kac and Peterson for integrable Lie algebras, we associate a group to every tame extended affine Lie algebra. Afterwards, we show that the extended affine Weyl group of the ground Lie algebra can be recovered as a quotient group of two subgroups of the group associated to the underlying algebra similar to Kac–Moody groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Research Institute for Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.