Abstract

In this paper, we study generalized soluble groups with restriction on normal closures of cyclic subgroups. A group G is said to have finite Hirsch–Zaitsev rank if G has an ascending series whose factors are either infinite cyclic or periodic and if the number of infinite cyclic factors is finite. It is not hard to see that the number of infinite cyclic factors in each of such series is an invariant of a group G. This invariant is called the Hirsch–Zaitsev rank of G and will be denoted by rhz(G). We study the groups in which the normal closure of every cyclic subgroup has the Hirsch–Zaitsev rank at most b (b is some positive integer). For some natural restrictions we find a function k1(b) such that rhz([G/Tor(G),G/Tor(G)]) ≤ k1(b).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call