Abstract

Tree-graded spaces are generalizations of R -trees. They appear as asymptotic cones of groups (when the cones have cut-points). Since many questions about endomorphisms and automorphisms of groups, solving equations over groups, studying embeddings of a group into another group, etc. lead to actions of groups on the asymptotic cones, it is natural to consider actions of groups on tree-graded spaces. We develop a theory of such actions which generalizes the well-known theory of groups acting on R -trees. As applications of our theory, we describe, in particular, relatively hyperbolic groups with infinite groups of outer automorphisms, and co-Hopfian relatively hyperbolic groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.