Abstract
The integration of wireless access networks with optical access networks in the so-called fiber-wireless (FiWi) networks has recently emerged as a promising strategy for providing flexible network services at relatively high transmission rates. FiWi network research to date has mainly focused on optical access networks with the normal reach (around 20km) of passive optical networks (PONs). We make two main contributions to the study of FiWi networking with a long-range PON with a propagation distance on the order of 100km in this paper. First, through extensive simulations, we investigate the packet delays when relatively low-rate traffic that has traversed a wireless network is mixed with conventional high-rate PON-only traffic. We consider a range of different FiWi network architectures with different dynamic bandwidth allocation (DBA) mechanisms. Second, we closely examine the grouping of the optical network units (ONUs) in the double-phase polling (DPP) DBA mechanism in long-range FiWi networks. We introduce a novel grouping by cycle length (GCL) strategy that achieves favorable packet delay performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.