Abstract
Annexin A2 (AnxA2) is ubiquitous in vertebrates and has been identified as a multifunctional protein participating in a series of biological processes, such as endocytosis, exocytosis, signal transduction, transcription regulation, and immune responses. However, the function of AnxA2 in fish during virus infection still remains unknown. In this study, we identified and characterized AnxA2 (EcAnxA2) in Epinephelus coioides. EcAnxA2 encoded a 338 amino acid protein with four identical annexin superfamily conserved domains, which shared high identity with other AnxA2 of different species. EcAnxA2 was widely expressed in different tissues of healthy groupers, and its expression was significantly increased in grouper spleen cells infected with red-spotted grouper nervous necrosis virus (RGNNV). Subcellular locatio n analyses showed that EcAnxA2 diffusely distributed in the cytoplasm. After RGNNV infection, the spatial distribution of EcAnxA2 was unaltered, and a few EcAnxA2 co-localized with RGNNV during the late stage of infection. Furthermore, overexpression of EcAnxA2 significantly increased RGNNV infection, and knockdown of EcAnxA2 reduced RGNNV infection. In addition, overexpressed EcAnxA2 reduced the transcription of interferon (IFN)-related and inflammatory factors, including IFN regulatory factor 7 (IRF7), IFN stimulating gene 15 (ISG15), melanoma differentiation related gene 5 (MDA5), MAX interactor 1 (Mxi1) laboratory of genetics and physiology 2 (LGP2), IFN induced 35 kDa protein (IFP35), tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin 6 (IL-6). The transcription of these genes was up-regulated when EcAnxA2 was inhibited by siRNA. Taken together, our results showed that EcAnxA2 affected RGNNV infection by down-regulating the host immune response in groupers, which provided new insights into the roles of AnxA2 in fish during virus infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.