Abstract

This paper proposes a novel architecture called Grouped Photon Mapping, which combines standard photon mapping with the light-beam concept to improve the nearest-neighbor density estimation method. Based on spatial coherence, we cluster all of photons, which are deposited in the photon map, into different beam-like groups. Each group of photons is individually stored in an isolated photon map. By the distribution of the photons in each photon map, we construct a polygonal boundary to represent a beam-like illuminated area. These boundaries offer a more accurate and flexible sampling area to filter neighbor photons around the query point. In addition, by a level of detail technique, we can control the photon-count in each group to obtain a balance between biases and noise. The results of our experiments prove that our method can successfully reduce bias errors and light leakage. Especially, for complicated caustic effects through a gemstone-like object, we can render a smoother result than standard photon mapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call