Abstract
Commercial bone sonometers measure broadband ultrasonic attenuation and/or speed of sound (SOS) in order to assess bone status. Phase velocity, which is usually measured in frequency domain, is a fundamental material property of bone that is related to SOS, which is usually measured in time domain. Four previous in vitro studies indicate that phase velocity in human cancellous bone decreases with frequency (i.e., negative dispersion). In order to investigate frequency-dependent phase velocity in vivo, through-transmission measurements were performed in 73 women using a GE Lunar Achilles Insight commercial bone sonometer. Average phase velocity at 500 kHz was 1489 +/- 55 m/s (mean +/- standard deviation). Average dispersion rate was -59 +/- 52 m/sMHz. Group velocity was usually lower than phase velocity, as is expected for negatively dispersive media. Using a stratified model to represent cancellous bone, the reductions in phase velocity and dispersion rate in vivo as opposed to in vitro can be explained by (1) the presence of marrow instead of water as a fluid filler, and (2) the decreased porosity of bones of living (compared with deceased) subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.