Abstract

The elastic waves in the isotropic plate are dispersive waves with the characteristics of Lamb wave, however, S0 symmetric mode is less dispersive in the frequency region less than the first cut-off frequency. In the anisotropic plates such as CFRP plates, the propagation velocities vary with the directions as well as the dispersion of the Lamb wave, and the phase velocity direction does not accord with the group velocity direction. The phase velocity direction is equivalent the wave vector direction, while the group velocity direction is equivalent the energy flow direction. In this work, the group velocity dispersion curves were obtained by the dispersion relation of the Lamb wave in unidirectional CFRP plate with an orthotropic structure. The group velocities of the S0 symmetric mode in the frequency region less than the first cut-off frequency were corrected by applying the slowness surface. The propagation velocities of Lamb wave were decided by measuring the arrival time of the Lamb wave signals received with the two pinducers varying the propagating direction in the laminated unidirectional CFRP plates of 8, 16 and 24 plies having a volume fraction of 67%. The measured velocities are better agreement with corrected group velocity curve, except near the fiber direction at the cusp region. When the propagating direction is not accorded with the principal axis, the direction of the group velocities inclines toward the fiber direction in the unidirectional CFRP plates, suggesting that the energy propagates preferentially toward fiber direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.