Abstract
Rayleigh–Taylor (RT) instability develops at the interface between two fluids of different densities accelerated against their density gradients. Intense interfacial fluid mixing ensues with time. RT mixing controls a broad range of processes in fluids, plasmas, materials, at astrophysical and at molecular scales. In this work we focus on the physics of RT mixing, which we have identified through our theoretical and experimental studies. The theory analyzes symmetries and invariants of RT dynamics and finds that RT mixing has strong correlations, weak fluctuations, and is sensitive to deterministic conditions. The experiment unambiguously observes heterogeneity, anisotropy and sensitivity to deterministic conditions of RT mixing in a broad range of setups. The theory and the experiment agree with one another, reveal that RT mixing may exhibit order and suggest new avenue for studies interfacial mixing in nature and technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.