Abstract

Group theoretical methods, worked out in particular by Mackey and Wigner, allow to attain the explicit Quantum Theory of a free particle through a purely deductive development based on symmetry principles. The extension of these methods to the case of an interacting particle finds a serious obstacle in the loss of the symmetry condition for the transformations of Galilei’s group. The known attempts towards such an extension introduce restrictions which lead to theories empirically too limited. In the present article we show how the difficulties raised by the loss of symmetry can be overcome without the restrictions that affect tha past attempts. According to our results, the different specific forms of the wave equation of an interacting particle are implied by particular first order invariance properties that characterize the interaction with respect to specific sub-groups of galileian transformations. Moreover, the possibility of yet unknown forms of the wave equation is left open.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.