Abstract
We use an algebraic approach based on representations of de Sitter group to construct covariant quantum fields in arbitrary dimensions. We study the complementary and the discrete series which correspond to light and massless fields and which lead new feature with respect to the massive principal series we previously studied (hep-th/0606119). When considering the complementary series, we make use of a non-trivial scalar product in order to get local expressions in the position representation. Based on these, we construct a family of covariant canonical fields parametrized by SU(1,1)/U(1). Each of these correspond to the dS invariant alpha-vacua. The behavior of the modes at asymptotic times brings another difficulty as it is incompatible with the usual definition of the in and out vacua. We propose a generalized notion of these vacua which reduces to the usual conformal vacuum in the conformally massless limit. When considering the massless discrete series we find that no covariant field obeys the canonical commutation relations. To further analyze this singular case, we consider the massless limit of the complementary scalar fields we previously found. We obtain canonical fields with a deformed representation by zero modes. The zero modes have a dS invariant vacuum with singular norm. We propose a regularization by a compactification of the scalar field and a dS invariant definition of the vertex operators. The resulting two-point functions are dS invariant and have a universal logarithmic infrared divergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.