Abstract
A group-theoretical discussion on the hypercubic lattice described by the affine Coxeter-Weyl group W(a)(B(n)) is presented. When the lattice is projected onto the Coxeter plane it is noted that the maximal dihedral subgroup D(h) of W(B(n)) with h = 2n representing the Coxeter number describes the h-fold symmetric aperiodic tilings. Higher-dimensional cubic lattices are explicitly constructed for n = 4, 5, 6. Their rank-3 Coxeter subgroups and maximal dihedral subgroups are identified. It is explicitly shown that when their Voronoi cells are decomposed under the respective rank-3 subgroups W(A(3)), W(H(2)) × W(A(1)) and W(H(3)) one obtains the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron, respectively. Projection of the lattice B(4) onto the Coxeter plane represents a model for quasicrystal structure with eightfold symmetry. The B(5) lattice is used to describe both fivefold and tenfold symmetries. The lattice B(6) can describe aperiodic tilings with 12-fold symmetry as well as a three-dimensional icosahedral symmetry depending on the choice of subspace of projections. The novel structures from the projected sets of lattice points are compatible with the available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations and Advances
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.