Abstract

An underlying mathematical mechanism for formation of periodic geometric patterns in uniform materials is investigated. Symmetry of a rectangular parallelepiped domain with periodic boundaries is modeled as an equivariance to a group O (2) × O (2) × O (2). The standard group-theoretic approach is used to investigate possible patterns of this domain that emerge through direct and some secondary bifurcations. This investigation clarifies the mechanism of successive symmetry-breaking bifurcation, which entails a variety of geometrical patterns in three-dimensional uniform materials. In particular, a few characteristic geometric patterns, such as oblique layer, column and diamond patterns, are identified and classified. Pattern simulations are conducted on geometrical patterns of joints in a calcite and folds in a stratum to reinforce pertinence of the pattern formation mechanism. Images of three-dimensional patterns of joints and folds are expanded into the triple Fourier series, and transient processes of bifurcation are reconstructed to arrive at possible courses of successive bifurcation. Qualitative information from this approach can offer insight into transient courses of deformation, which have been overlooked up to now.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.