Abstract

We consider the recovery of sparse signals, f ∈ ℝN, containing at most k ≪ N nonzero entries using linear measurements contaminated with i.i.d. Gaussian background noise. Given this measurement model, we present and analyze a computationally efficient group testing strategy for recovering the support of f and approximating its nonzero entries. In particular, we demonstrate that group testing measurement matrix constructions may be combined with statistical binary detection and estimation methods to produce efficient adaptive sequential algorithms for sparse signal support recovery. Furthermore, when f exhibits sufficient sparsity, we show that these adaptive group testing methods allow the recovery of sparse signals using fewer noisy linear measurements than possible with non-adaptive methods based on Gaussian measurement ensembles. As a result we improve on previous sufficient conditions for sparsity pattern recovery in the noisy sublinear-sparsity regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call