Abstract
Single-step nonadaptive group testing approaches for reducing the number of tests required to detect a small subset of positive samples from a larger set require solving two algorithmic problems. First, how to design the samples-to-tests measurement matrix, and second, how to decode the results of the tests to uncover positive samples. In this study, we focus on the first challenge. We introduce real-valued group testing, which matches the characteristics of existing PCR testing pipelines more closely than combinatorial group testing or compressed sensing settings. We show a set of conditions that allow measurement matrices to guarantee unambiguous decoding of positives in this new setting. For small matrix sizes, we also propose an algorithm for constructing matrices that meet the proposed condition. On simulated data sets, we show that the matrices resulting from the algorithm can successfully recover positive samples at higher positivity rates than matrices designed for combinatorial group testing setting. We use wet laboratory experiments involving SARS-CoV-2 nasopharyngeal swab samples to further validate the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.