Abstract

In this paper, we consider Tyler's robust covariance M-estimator under group symmetry constraints. We assume that the covariance matrix is invariant to the conjugation action of a unitary matrix group, referred to as group symmetry. Examples of group symmetric structures include circulant, perHermitian, and proper quaternion matrices. We introduce a group symmetric version of Tyler's estimator (STyler) and provide an iterative fixed point algorithm to compute it. The classical results claim that at least n=p+1 sample points in general position are necessary to ensure the existence and uniqueness of Tyler's estimator, where p is the ambient dimension. We show that the STyler requires significantly less samples. In some groups, even two samples are enough to guarantee its existence and uniqueness. In addition, in the case of elliptical populations, we provide high probability bounds on the error of the STyler. These, too, quantify the advantage of exploiting the symmetry structure. Finally, these theoretical results are supported by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.