Abstract
In a group signature scheme, users can anonymously sign messages on behalf of the group they belong to, yet it is possible to trace the signer when needed. Since the first proposal of lattice-based group signatures in the random oracle model by Gordon, Katz, and Vaikuntanathan (ASIACRYPT 2010), the realization of them in the standard model from lattices has attracted much research interest, however, it has remained unsolved. In this paper, we make progress on this problem by giving the first such construction. Our schemes satisfy CCA-selfless anonymity and full traceability, which are the standard security requirements for group signatures proposed by Bellare, Micciancio, and Warinschi (EUROCRYPT 2003) with a slight relaxation in the anonymity requirement suggested by Camenisch and Groth (SCN 2004). We emphasize that even with this relaxed anonymity requirement, all previous group signature constructions rely on random oracles or NIZKs, where currently NIZKs are not known to be implied from lattice-based assumptions. We propose two constructions that provide tradeoffs regarding the security assumption and efficiency: Our first construction is proven secure assuming the standard LWE and the SIS assumption. The sizes of the public parameters and the signatures grow linearly in the number of users in the system. Our second construction is proven secure assuming the standard LWE and the subexponential hardness of the SIS problem. The sizes of the public parameters and the signatures are independent of the number of users in the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.