Abstract

In recent years, immunological science has evolved, and cancer vaccines are now approved and available for treating existing cancers. Because cancer vaccines require time to elicit an immune response, a delayed treatment effect is expected and is actually observed in drug approval studies. Accordingly, we propose the evaluation of survival endpoints by weighted log-rank tests with the Fleming-Harrington class of weights. We consider group sequential monitoring, which allows early efficacy stopping, and determine a semiparametric information fraction for the Fleming-Harrington family of weights, which is necessary for the error spending function. Moreover, we give a flexible survival model in cancer vaccine studies that considers not only the delayed treatment effect but also the long-term survivors. In a Monte Carlo simulation study, we illustrate that when the primary analysis is a weighted log-rank test emphasizing the late differences, the proposed information fraction can be a useful alternative to the surrogate information fraction, which is proportional to the number of events. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.