Abstract

This paper investigates group secret key generation problems for different types of wireless networks, by exploiting physical layer characteristics of wireless channels. A new group key generation strategy with low complexity is proposed, which combines the well-established point-to-point pairwise key generation technique, the multisegment scheme, and the one-time pad. In particular, this group key generation process is studied for three types of communication networks: 1) the three-node network; 2) the multinode ring network; and 3) the multinode mesh network. Three group key generation algorithms are developed for these communication networks, respectively. The analysis shows that the first two algorithms yield optimal group key rates, whereas the third algorithm achieves the optimal multiplexing gain. Next, for the first two types of networks, we address the time allocation problem in the channel estimation step to maximize the group key rates. This non-convex max–min time allocation problem is first reformulated into a series of geometric programming, and then, a single-condensation-method-based iterative algorithm is proposed. Numerical results are also provided to validate the performance of the proposed key generation algorithms and the time allocation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.