Abstract

Functional magnetic resonance imaging (fMRI) is increasingly used for studying functional integration of the brain. However, large inter-subject variability in functional connectivity, particularly in disease populations, renders detection of representative group networks challenging. In this paper, we propose a novel technique, "group replicator dynamics" (GRD), for detecting sparse functional brain networks that are common across a group of subjects. We extend the replicator dynamics (RD) approach, which we show to be a solution of the nonnegative sparse principal component analysis problem, by integrating group information into each subject's RD process. Our proposed strategy effectively coaxes all subjects' networks to evolve towards the common network of the group. This results in sparse networks comprising the same brain regions across subjects yet with subject-specific weightings of the identified brain regions. Thus, in contrast to traditional averaging approaches, GRD enables inter-subject variability to be modeled, which facilitates statistical group inference. Quantitative validation of GRD on synthetic data demonstrated superior network detection performance over standard methods. When applied to real fMRI data, GRD detected task-specific networks that conform well to prior neuroscience knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.