Abstract
Amphiphilic polymers bearing phosphorylcholine (PC) groups can form films of interfacial structure similar to that of the outer membrane of living cells. The films, as prepared, present PC groups to the external aqueous environment and exhibit good biocompatibility. However, under certain conditions, the surface structure can change irreversibly due to the reorientation and deep migration of the surface groups. X-ray photoelectron spectroscopy (XPS), dynamic contact angle measurements, and cell culture experiments were used to investigate the reorientation and migration of the surface groups of an amphiphilic PC-polymer coating. When the polymer surface is immersed into or drawn out of water, significant reorientation and group migration occurs, as suggested by the large difference between the advancing and receding contact angles. Angle-resolved XPS measurements indicate that the hydrophobic groups move to the air/film interface while the hydrophilic groups migrate towards the bulk of the polymer coating. Long periods of aging may result in irreversible changes of the surface structure and decrease the biocompatibility of the materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.