Abstract
Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. Two well-known class of MC methods are the Importance Sampling (IS) techniques and the Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce the Group Importance Sampling (GIS) framework where different sets of weighted samples are properly summarized with one summary particle and one summary weight. GIS facilitates the design of novel efficient MC techniques. For instance, we present the Group Metropolis Sampling (GMS) algorithm which produces a Markov chain of sets of weighted samples. GMS in general outperforms other multiple try schemes as shown by means of numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.