Abstract

The linear transformation group approach is developed to simulate heat diffusion problems in a media with the thermal conductivity and the heat capacity are nonlinear and obeyed a striking power law relation, subject to nonlinear boundary conditions due to radiation exchange at the interface according to the fourth power law. The application of a one-parameter transformation group reduces the number of independent variables by one so that the governing partial differential equation with the boundary conditions reduces to an ordinary differential equation with appropriate corresponding conditions. The Runge–Kutta shooting method is used to solve the nonlinear ordinary differential equation. Different parametric studies are worked out and plotted to study the effect of heat transfer coefficient, density and radiation number on the surface temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.