Abstract

In this paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three axioms for the corresponding defining relations. We show that the obtained ring is non-trivial. Moreover, we show that this ring enjoys a global filtration that agrees with relations, find a basis of the ring as a linear space and establish the corresponding structure theorems. We also provide a revision of a concept of Gröbner basis for our rings and establish a greedy algorithm for the Ideal Membership Problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.