Abstract

A short review of our investigations devoted to the use of ion-beam-synthesized nanoclusters for silicon-based light emission and nonvolatile memory effects is presented. Blue-violet light emission is demonstrated based on Ge-implanted silicon dioxide layers thermally grown on silicon substrates. This version of silicon-based light emission relies on Ge-related defects in the amorphous ≡Si–O–Si≡ network. The photoluminescence and electroluminescence are excited by a singlet S0–S1 transition of a neutral oxygen vacancy and by electron injection from the silicon substrate into the silicon dioxide layer, respectively. Whereas the photoluminescence excitation is a well-known mechanism, for the case of electroluminescence an interpretation was performed for the first time in the course of our studies. It was found that the most probable way to excite luminescence centers is the impact excitation by hot electrons. Whereas the injection is explained by trap-assisted tunneling of electrons from the substrate into the oxide, the electrons will be transported via traps or in the SiO2 conduction band. The application of the silicon-based light-emitting devices for an integrated optocoupler arrangement is described. Another application of nanoclusters is based on the investigation of thin Si-implanted silicon dioxide layers for nonvolatile memory devices. First promising results demonstrate that the observed programming window can reach several volts and the devices exhibit excellent retention behavior. A 256 K-nv-SRAM is demonstrated showing a programming window of >1 V for write pulses of 12 V/8 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call