Abstract
ABSTRACTWith general lighting applications being responsible for over 20% of the energy consumption in the United States, advances in solid-state lighting have the potential for considerable energy and cost savings. The United States Department of Energy predicts that the increased use of solid state lighting will result in a 46% lighting consumption energy savings by the year 2030. Smart lighting systems have the potential for reducing energy costs while also providing a means for short distance data transmission via free space optics. The group III-nitride (III-N) family of materials, including aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), their binary and ternary alloys, are uniquely situated to provide light emitting diodes (LEDs) across the full visible spectrum, photodetectors (PDs) and high power, high speed transistors. In this work, aluminum gallium nitride (AlGaN) / GaN high electron mobility transistors (HEMTs) and indium gallium nitride (InGaN) photodiodes (PDs) are fabricated and characterized. HEMTs and LEDs (or PDs) are grown on the same substrate for the purpose of creating electronic and optoelectronic integrated circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.