Abstract

RNA splicing, the removal of introns and ligation of exons, is a crucial process during mRNA maturation. Group II introns are large ribozymes that self-catalyze their splicing, as well as their transposition. They are living fossils of spliceosomal introns and eukaryotic retroelements. The yeast mitochondrial Sc.ai5γ is the first identified and best-studied self-splicing group II intron. A combination of biochemical, biophysical, and computational tools enables studying its catalytic properties, structure, and dynamics, while also serving to develop new therapeutic and biotechnological tools. We survey the history of group II intron studies paralleling the trends in RNA methodology with Sc.ai5γ in the spotlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.