Abstract

Metabotropic glutamate receptor (mGluR)-mediated inhibition of high-voltage-activated Ca2+ currents was investigated in pyramidal neurons acutely isolated from rat dorsal frontoparietal neocortex. Whole cell recordings were made at 30-32 degrees C, with Ca2+ as the charge carrier. Selective agonists were used to classify the subgroup of mGluRs mediating the response. Ca2+ currents were inhibited by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) and by the group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) but not by the group II agonist (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or the group III agonist (+)-2-amino-4-phosphonobutryic acid (-AP4). (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (-CCG-I) was effective at 10 and 100 microM but not at 1 microM, consistent with involvement of group I mGluRs. Variable results were obtained with the putative mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and the putative mGluR1-selective antagonist (S)-4-carboxyphenylglycine [(S)-4CPG], indicating that the group I mGluR subtypes may vary between cells or that these compounds were activating other receptors. The actions of (+)-alpha-methyl-4-carboxyphenylglycine [(+)-MCPG] were consistent with it being a low-potency antagonist. Several features of the Ca2+ current inhibition evoked by DHPG distinguished it from the rapid modulation typical of a direct action of G proteins on Ca2+ channels; the inhibition was slow to reach maximum (tens of seconds), current activation was not slowed or shifted in the positive voltage direction, and the inhibition was not relieved by positive prepulses. Nimodipine and omega-conotoxin GVIA blocked fractions of the current and also reduced the magnitude of the responses to DHPG, indicating that both L- and N-type Ca2+ channels were regulated. These results further differentiate the slow modulatory pathway observed in neocortical neurons when Ca2+ is used as the charge carrier from the rapid voltage-dependent mechanism reported to inhibit Ba2+ currents under Ca2+-free conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.