Abstract
GNRA tetraloops, found in high frequency in natural RNAs, make loop-receptor interactions, stabilizing the tertiary structure of Group I introns, a class of small RNAs. Analyzing 230 Group I introns, to study the distribution and sequence pattern of the GNRA tetraloops, we suggest that these features reflect the ancestral nature of these catalytic molecules, in a prebiotic RNA world. The adenosine rich GNRA tetraloops would have interacted with each other through long range RNA-RNA interactions to form higher order structures forming potential sites that render the propensity for the short RNAs to bind to metal ions from the prebiotic pool, aiding them to act as metalloenzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.