Abstract

The incorporation of prior knowledge into the ma-chine learning pipeline is subject of informed machine learning. Spatial invariances constitute a class of prior knowledge that can be taken into account especially in the design of model architectures or through virtual training examples. In this contribution, we investigate fully connected neural network architectures that are equivariant with respect to the dihedral group of order eight. This is practically motivated by the application of leakage detection in vacuum bagging which plays an important role in the manufacturing of fiber composite components. Our approach for the derivation of an equivariant architecture is constructive and transferable to other symmetry groups. It starts from a standard network architecture and results in a specific kind of weight sharing in each layer. In numerical experiments, we compare equivariant and standard networks on a novel leakage detection dataset. Our results indicate that group equivariant networks can capture the application specific prior knowledge much better than standard networks, even if the latter are trained on augmented data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.