Abstract

Group elevator scheduling has long been recognized as an important problem for building transportation efficiency, since unsatisfactory elevator service is one of the major complaints of building tenants. It now has a new significance driven by homeland security concerns. The problem, however, is difficult because of complicated elevator dynamics, uncertain traffic in various patterns, and the combinatorial nature of discrete optimization. With the advent of technologies, one important trend is to use advance information collected from devices such as destination entry, radio frequency identification, and sensor networks to reduce uncertainties and improve efficiency. How to effectively utilize such information remains an open and challenging issue. This paper presents the optimized scheduling of a group of elevators with destination entry and future traffic information for normal operations and coordinated emergency evacuation. Key problem characteristics are abstracted to establish a two-level separable formulation. A decomposition and coordination approach is then developed, where subproblems are solved by ordinal optimization-based local search, and top ranked nodes are selectively optimized by using dynamic programming. The approach is then extended to handle up-peak with little or no future traffic information, elevator parking for low intensity traffic, and coordinated emergency evacuation. Numerical testing results demonstrate near-optimal solution quality, computational efficiency, the value of future traffic information, and the potential of using elevators for emergency evacuation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.