Abstract

AbstractWe show that the necessary conditions for the existence of group divisible designs with block size four (4‐GDDs) of type are sufficient for (mod ), = 39, 51, 57, 69, 87, 93, 111, 123 and 129, and for = 13, 17, 19, 23, 25, 29, 31 and 35. More generally, we show that for (mod 6), the possible exceptions occur only when , and there are no exceptions at all if has a divisor such that (mod 4) or is a prime not greater than 43. Hence, there are no exceptions when (mod 12). Consequently, we are able to extend the known spectrum for and 5 (mod 6). Also, we complete the spectrum for 4‐GDDs of type .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.