Abstract

A unified group contribution (GC) lattice equation of state (EOS) was formulated based on the multifluid approximation of the nonrandom lattice fluid theory. The GC-EOS requires segment size and interaction energy parameter from functional group characteristics. The unique feature of the approach is that a single set of group parameters are used for both pure fluids and mixtures. The approach was found to be quantitatively applicable for predicting thermodynamic properties of real pure fluids and mixtures. Its potential utility was demonstrated for vapor pressures, vapor–liquid coexistence densities of pure fluids and phase equilibrium properties of mixtures including polymeric solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.