Abstract

In this paper, group consensus problems in fixed directed networks of dynamic agents are investigated. Group consensus means that the agents in each group share a consistent value while there is no agreement between any two groups. Based on algebraic graph theory, sufficient conditions guaranteeing group consensus under the proposed control protocol in the presence of random noises and communication delays are derived. The analysis uses a stability result of Mao for stochastic differential delay equations, which ensures the consensus can be achieved almost surely and exponentially fast. Numerical examples are provided to demonstrate the availability of the obtained results as well as the effect of time delay/noise intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call