Abstract
Group consensus implies reaching multiple groups where agents belonging to the same cluster reach state consensus. This article focuses on linear multiagent systems under nonnegative directed graphs. A new necessary and sufficient condition for ensuring group consensus is derived, which requires the spanning forest of the underlying directed graph and that of its quotient graph induced with respect to a clustering partition to contain equal minimum number of directed trees. This condition is further shown to be equivalent to containing cluster spanning trees, a commonly used topology for the underlying graph in the literature. Under a designed controller gain, lower bound of the overall coupling strength for achieving group consensus is specified. Moreover, the pattern of the multiple consensus states formed by all clusters is characterized when the overall coupling strength is large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.