Abstract

Group consensus seeking is investigated for a class of discrete-time heterogeneous multiagent systems composed of first-order and second-order agents with both communication and input time delays. Considering two types of system topologies, novel protocols based on the competitive and cooperative relationships among the agents are presented, respectively. By matrix theory and frequency domain analysis method, the sufficient conditions solving consensus problem are obtained. The results show that the achievement of group consensus is bound up with the input time delays, coupling weights between the agents and the system’s control parameters, but it is irrelevant to the communication delays. Finally, numerical simulations are presented to illustrate the correctness of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call