Abstract

In this article, the coordination control problem of group tracking consensus is considered for networked nonholonomic mobile multirobot systems (NNMMRSs). This problem framework generalizes the findings of complete consensus in NNMMRSs and group consensus in networked Lagrangian systems (NLSs), enjoying capacious application backgrounds. By leveraging a kinematic controller embedded in the adaptive torque control protocols, a new convergence criterion of group consensus is established. In contrast to the formulation under strict algebraic assumptions, it is found that group tracking consensus for NNMMRSs can be realized under a simple geometrical condition. The system stability analysis is dictated by the property of network topology with acyclic partition. Finally, the theoretical achievements are verified by illustrative numerical examples. The results show an interesting phenomenon that, for NNMMRSs, the state responses exhibit negative correlation with the algebraic connectivity and coupling strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call