Abstract

We describe all possible coactions of finite groups (equivalently, all group gradings) on two-dimensional Artin-Schelter regular algebras. We give necessary and sufficient conditions for the associated Auslander map to be an isomorphism, and determine precisely when the invariant ring for the coaction is Artin-Schelter regular. The proofs of our results are combinatorial and exploit the structure of the McKay quiver associated to the coaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.